
Color Segmentation Tool  

Automatic Color Segmentation Tool With ARCPro 

Anthony K. Sonsteng 

University of North Georgia 

 

 



2 

 

Abstract 

Color segmentation is the division of an images pixels based on color. Automatic color 
segmentation has a number of applications across many different fields of work. from quality 
control to medical applications (Hance, 1996), traffic imaging (Dhanachandra, 2015), and Facial 
recognition . The application of color segmentation for this study is primarily land use. Being 
able to quickly and effectively isolate bodies of water before, during, and after a flood could help 
with rescue efforts. Being able to identify the areas affected by forest fires in a pinch can help 
curve further loss of green space. The ability to identify green space or impervious surfaces 
within a given area can help engineers make decisions on when, where, and what to construct. 



3 

 

Background 

Easily accessible color segmentation is very handy. Having a tool such as this on hand 
should help a person to easily extract similar aspects within an area of interest such as green 
space or bodies of water. Being able to isolate these areas in a raster file makes processes such as 
extract by mask much more manageable and efficient. This is a tool I wish I had the means to 
manage and utilize several years ago in some of my lower level classes while in IESA. 

 
Objectives 

 
Isolate specific color ranges within a raster in order to make specific areas of interest 

more accessible for analysis 
 

Materials & Methods 

In order to produce the automatic color segmentation tool created here the following 
resources were used and utilized: 

 
− ARCPro 2.1 
− Notepad++ 

 
This is the python code implemented: 
 
import numpy as np 
import math 
import statistics 
 
class Toolbox(object): 
    def __init__(self): 
        """Define the toolbox (the name of the toolbox is the name of the 
        .pyt file).""" 
        self.label = "Toolbox" 
        self.alias = "" 
 
        # List of tool classes associated with this toolbox 
        self.tools = [Automatic_greenspace_detector] 
 
 
class Automatic_greenspace_detector(object): 
    def __init__(self): 
        """Define the tool (tool name is the name of the class).""" 
        self.label = "Automatic Greenspace detector" 
        self.description = "" 
        self.canRunInBackground = False 
 
    def getParameterInfo(self): 



4 

 

        """Define parameter definitions""" 
        input_raster = arcpy.Parameter( 
            name="facc", 
            displayName="input_raster", 
            direction="Input", 
            datatype="GPRasterLayer", 
            parameterType="Required", 
        )   
        R_mean = arcpy.Parameter( 
            name="R_mean", 
            displayName="R_mean", 
            direction="Input", 
            datatype="GPDouble", 
            parameterType="Required",             
        ) 
        G_mean = arcpy.Parameter( 
            name="G_mean", 
            displayName="G_mean", 
            direction="Input", 
            datatype="GPDouble", 
            parameterType="Required",             
        ) 
        B_mean = arcpy.Parameter( 
            name="B_mean", 
            displayName="B_mean", 
            direction="Input", 
            datatype="GPDouble", 
            parameterType="Required",             
        ) 
        R_stdev = arcpy.Parameter( 
            name="R_stdev", 
            displayName="R_stdev", 
            direction="Input", 
            datatype="GPDouble", 
            parameterType="Required",             
        ) 
        G_stdev = arcpy.Parameter( 
            name="G_stdev", 
            displayName="G_stdev", 
            direction="Input", 
            datatype="GPDouble", 
            parameterType="Required",             
        ) 
        B_stdev = arcpy.Parameter( 
            name="B_stdev", 
            displayName="B_stdev", 



5 

 

            direction="Input", 
            datatype="GPDouble", 
            parameterType="Required",             
        ) 
        K = arcpy.Parameter( 
            name="K", 
            displayName="K", 
            direction="Input", 
            datatype="GPDouble", 
            parameterType="Required",             
        ) 
        output_filepath_1 = arcpy.Parameter( 
            name="output_filepath_1", 
            displayName="Output_filepath_1", 
            direction="Output", 
            datatype="DERasterDataset", 
            parameterType="Required", 
        ) 
        output_filepath_2 = arcpy.Parameter( 
            name="output_filepath_2", 
            displayName="Output_filepath_2", 
            direction="Output", 
            datatype="DERasterDataset", 
            parameterType="Required", 
        ) 
   
        params = [input_raster, R_mean, G_mean, B_mean, R_stdev, G_stdev, B_stdev, K,          

output_filepath_1, output_filepath_2] 
        return params 
 
    def isLicensed(self): 
        """Set whether tool is licensed to execute.""" 
        return True 
 
    def updateParameters(self, parameters): 
        """Modify the values and properties of parameters before internal 
        validation is performed.  This method is called whenever a parameter 
        has been changed.""" 
        return 
 
    def updateMessages(self, parameters): 
        """Modify the messages created by internal validation for each tool 
        parameter.  This method is called after internal validation.""" 
        return 
 
    def execute(self, parameters, messages): 



6 

 

        """The source code of the tool.""" 
   
        input_ras = parameters[0].valueAsText 
        R_mean = parameters[1].value 
        G_mean = parameters[2].value 
        B_mean = parameters[3].value 
        R_stdev = parameters[4].value 
        G_stdev = parameters[5].value 
        B_stdev = parameters[6].value 
        k = parameters[7].value 
        output_filepath_1 = parameters[8].valueAsText 
        output_filepath_2 = parameters[9].valueAsText 
   
        ras = arcpy.Raster(input_ras) 
        ras_a = arcpy.RasterToNumPyArray(ras) 
         
        a = [R_mean, G_mean, B_mean] 
        sd = [R_stdev, G_stdev, B_stdev] 
   
        dist_a, ret_a = find_segments(ras_a, a, sd, k) 
        dist = arcpy.NumPyArrayToRaster(dist_a, ras.extent.lowerLeft, ras.meanCellWidth, 

ras.meanCellHeight) 
        ret = arcpy.NumPyArrayToRaster(ret_a, ras.extent.lowerLeft, ras.meanCellWidth, 

ras.meanCellHeight) 
         
        dist.save(output_filepath_1) 
        ret.save(output_filepath_2) 
        return 
 
def find_segments(ras_a, a, sd, k): 
    #get useful info from ras_a.shp 
    nbands = 3 
    nrows = ras_a.shape[1] 
    ncols = ras_a.shape[2] 
     
    #calculate radius of target color sphere 
    radius = 0 
    for b in range(nbands):     
        radius += (k*sd[b])**2 
    radius = math.sqrt(radius) 
     
    #create a new zero distance array 
    dist_a = np.zeros(ras_a.shape[1:3]) 
 
    #clone the original raster array 
    ret_a = ras_a.copy() 



7 

 

     
    #iterations 
    for r in range(nrows): 
        for c in range(ncols): 
            #calculate color distance for this call aat (r, c) 
            for b in range(nbands): 
                dist_a[r,c] +=(ras_a[b,r,c]-a[b])**2 
                 
            #sqrt to get the distance, notsum on squared distance 
            dist_a[r,c] = math.sqrt(dist_a[r,c]) 
             
            #if this cell is outside the sphere 
            if dist_a[r,c] > radius: 
                #return a negative distance 
                dist_a[r,c]= -dist_a[r,c] 
                 
                #return black 
                for b in range(nbands): 
                    ret_a[b,r,c] = 0 
 
    return dist_a, ret_a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 

 

This code, once implemented into ARCPro, should produce the following interface: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (Tool interface) 



9 

 

Here we have a total of ten parameters we must define. The first is a drop down menu in 

which we select the desired raster for analysis. Before filling out the rest of the parameters, you 

should take a number of samples of your area of interest. The more samples taken, the more 

accurate your results should be. The following three parameters, labeled R_mean, G_mean, and 

B_mean respectively, are for your average red, green, and blue bands across the samples taken. 

The next three parameters, labeled R_stdev, G_stdev, and B_stdev respectively, are for the 

standard deviation of your red, green, and blue samples taken. The parameter labeled “K” is 

essentially a modifier to increase or decrease the range of colors allowed inside your target area. 

It is recommended you start with a K value of 1 and increase or decrease this input as needed. 

The last two parameters are outputs for the two raster files this tool will create for you. The first 

being a color distance raster determining the distance of each pixel from your target range,  the 

second being a strictly black or white raster with pixels with your range in while and pixels 

outside of your range being displayed as black. If parts of the desired area of interest are 

displayed in black the input for K should be increased, and if parts outside of your area of 

interest are being displayed in white, your K value should be decreased. 

Results 

The tools is displayed correctly within the ACRPro user interface. Perhaps some of the 

instructions for input could be more clear. As far as the actual application of the tool to 

manipulate your desired raster is works rather well, displaying a clear contrast between areas 

within and outside your desired color range. The example below is an example of tree cover 

identification in an area approximately four miles southwest of Cedartown, Georgia( Fig. 2 & 3). 

The one major and yet unresolved issue with the tool is the georeferenceing  

of the resulting outputs.    



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (Original Raster) 

 

 

 

 

 

 

 

 



11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (Resulting Output Raster) 

 

 

 

 

 

 

 

 

 



12 

 

References 

 

Hance, G. A., Umbaugh, S. E., Moss, R. H., & Stoecker, W. V. (1996). Unsupervised 
color image segmentation: With application to skin tumor borders. IEEE Engineering in 
Medicine and Biology Magazine, 15(1), 104-111.  

 
Dhanachandra, N., Manglem, K., & Chanu, Y. J. (2015). Image Segmentation Using K -

means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia Computer Science, 
54, 764-771  

 
J. Fritsch, S. Lang, A. Kleinehagenbrock, G. A. Fink and G. Sagerer, "Improving adaptive 

skin color segmentation by incorporating results from face detection," Proceedings. 11th IEEE 
International Workshop on Robot and Human Interactive Communication, Berlin, Germany, 
2
0
0
2
,
 
p
p
.
 
3
3
7
-
3
4
3


