Color Segmentation Tool

Automatic Color Segmentation Tool With ARCPro

Anthony K. Sonsteng

University of North Georgia

Abstract

Color segmentation is the division of an images pixels based on color. Automatic color
segmentation has a number of applications across many different fields of work. from quality
control to medical applications (Hance, 1996), traffic imaging (Dhanachandra, 2015), and Facial
recognition . The application of color segmentation for this study is primarily land use. Being
able to quickly and effectively isolate bodies of water before, during, and after a flood could help
with rescue efforts. Being able to identify the areas affected by forest fires in a pinch can help
curve further loss of green space. The ability to identify green space or impervious surfaces
within a given area can help engineers make decisions on when, where, and what to construct.

Background

Easily accessible color segmentation is very handy. Having a tool such as this on hand
should help a person to easily extract similar aspects within an area of interest such as green
space or bodies of water. Being able to isolate these areas in a raster file makes processes such as
extract by mask much more manageable and efficient. This is a tool | wish | had the means to
manage and utilize several years ago in some of my lower level classes while in IESA.

Obijectives

Isolate specific color ranges within a raster in order to make specific areas of interest
more accessible for analysis

Materials & Methods

In order to produce the automatic color segmentation tool created here the following
resources were used and utilized:

— ARCPro 2.1
— Notepad++

This is the python code implemented:

import numpy as np
import math
import statistics

class Toolbox(object):
def __init_ (self):
""""Define the toolbox (the name of the toolbox is the name of the

pyt file).""
self.label = "Toolbox"

self.alias = ""

List of tool classes associated with this toolbox
self.tools = [Automatic_greenspace_detector]

class Automatic_greenspace_detector(object):
def __init__ (self):
""'Define the tool (tool name is the name of the class)."""
self.label = "Automatic Greenspace detector"
self.description ="
self.canRuninBackground = False

def getParameterinfo(self):

"""Define parameter definitions

input_raster = arcpy.Parameter(
name="facc",
displayName="input_raster",
direction="Input",
datatype="GPRasterLayer",
parameterType="Required",

)

R_mean = arcpy.Parameter(
name="R_mean",
displayName="R_mean",
direction="Input",
datatype="GPDouble",
parameterType="Required",

)

G_mean = arcpy.Parameter(
name="G_mean",
displayName="G_mean",
direction="Input",
datatype="GPDouble",
parameterType="Required",

)

B_mean = arcpy.Parameter(
name="B_mean",
displayName="B_mean",
direction="Input",
datatype="GPDouble",
parameterType="Required",

)

R_stdev = arcpy.Parameter(
name="R_stdev",
displayName="R_stdev",
direction="Input",
datatype="GPDouble",
parameterType="Required",

)

G_stdev = arcpy.Parameter(
name="G_stdev",
displayName="G_stdev",
direction="Input",
datatype="GPDouble",
parameterType="Required",

)

B_stdev = arcpy.Parameter(
name="B_stdev",
displayName="B_stdev",

direction="Input",
datatype="GPDouble",
parameterType="Required",

)

K = arcpy.Parameter(
name="K",
displayName="K",
direction="Input",
datatype="GPDouble",
parameterType="Required",

)

output_filepath_1 = arcpy.Parameter(
name="output_filepath_1",
displayName="Output_filepath_1",
direction="Output",
datatype="DERasterDataset",
parameterType="Required",

)

output_filepath_2 = arcpy.Parameter(
name="output_filepath_2",
displayName="Output_filepath_2",
direction="Output",
datatype="DERasterDataset",
parameterType="Required",

)

params = [input_raster, R_mean, G_mean, B_mean, R_stdev, G_stdev, B_stdev, K,
output_filepath_1, output_filepath_2]
return params

def isLicensed(self):
""" Set whether tool is licensed to execute.
return True

def updateParameters(self, parameters):
""" Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed.""
return

def updateMessages(self, parameters):
""" Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation.™""
return

def execute(self, parameters, messages):

"""The source code of the tool.

input_ras = parameters[0].valueAsText
R_mean = parameters[1].value

G_mean = parameters[2].value

B_mean = parameters[3].value

R_stdev = parameters[4].value

G_stdev = parameters[5].value

B_stdev = parameters[6].value

k = parameters[7].value

output_filepath_1 = parameters[8].valueAsText
output_filepath_2 = parameters[9].valueAsText

ras = arcpy.Raster(input_ras)
ras_a = arcpy.RasterToNumPyArray(ras)

a=[R_mean, G_mean, B_mean]
sd = [R_stdev, G_stdev, B_stdev]

dist_a, ret_a = find_segments(ras_a, a, sd, k)

dist = arcpy.NumPyArrayToRaster(dist_a, ras.extent.lowerLeft, ras.meanCellWidth,
ras.meanCellHeight)

ret = arcpy.NumPyArrayToRaster(ret_a, ras.extent.lowerLeft, ras.meanCellWidth,
ras.meanCellHeight)

dist.save(output_filepath_1)
ret.save(output_filepath_2)
return

def find_segments(ras_a, a, sd, k):
#get useful info from ras_a.shp
nbands = 3
nrows = ras_a.shape[1]
ncols = ras_a.shape[2]

#calculate radius of target color sphere
radius =0
for b in range(nbands):
radius += (k*sd[b])**2
radius = math.sqrt(radius)

#create a new zero distance array
dist_a = np.zeros(ras_a.shape[1:3])

#clone the original raster array
ret_a=ras_a.copy()

#iterations
for r in range(nrows):
for ¢ in range(ncols):
#calculate color distance for this call aat (r, c)
for b in range(nbands):
dist_a[r,c] +=(ras_a[b,r,c]-a[b])**2

#sqrt to get the distance, notsum on squared distance
dist_a[r,c] = math.sgrt(dist_a[r,c])

#if this cell is outside the sphere
if dist_a[r,c] > radius:
#return a negative distance
dist_a[r,c]=-dist_a[r,c]

#return black
for b in range(nbands):
ret_a[b,r,c] =0

return dist_a, ret_a

This code, once implemented into ARCPro, should produce the following interface:

i v;}w i i

Ll
i e
Ll
\ i
\ Hin!
\

“ \ et
|

Figure 1. (Tool interface)

Here we have a total of ten parameters we must define. The first is a drop down menu in
which we select the desired raster for analysis. Before filling out the rest of the parameters, you
should take a number of samples of your area of interest. The more samples taken, the more
accurate your results should be. The following three parameters, labeled R_mean, G_mean, and
B_mean respectively, are for your average red, green, and blue bands across the samples taken.
The next three parameters, labeled R_stdev, G_stdev, and B_stdev respectively, are for the
standard deviation of your red, green, and blue samples taken. The parameter labeled “K” is
essentially a modifier to increase or decrease the range of colors allowed inside your target area.
It is recommended you start with a K value of 1 and increase or decrease this input as needed.
The last two parameters are outputs for the two raster files this tool will create for you. The first
being a color distance raster determining the distance of each pixel from your target range, the
second being a strictly black or white raster with pixels with your range in while and pixels
outside of your range being displayed as black. If parts of the desired area of interest are
displayed in black the input for K should be increased, and if parts outside of your area of
interest are being displayed in white, your K value should be decreased.

Results

The tools is displayed correctly within the ACRPro user interface. Perhaps some of the
instructions for input could be more clear. As far as the actual application of the tool to
manipulate your desired raster is works rather well, displaying a clear contrast between areas
within and outside your desired color range. The example below is an example of tree cover
identification in an area approximately four miles southwest of Cedartown, Georgia(Fig. 2 & 3).
The one major and yet unresolved issue with the tool is the georeferenceing

of the resulting outputs.

10

Figure 2 (Original Raster)

11

Figure 3. (Resulting Output Raster)

12

References

Hance, G. A., Umbaugh, S. E., Moss, R. H., & Stoecker, W. V. (1996). Unsupervised
color image segmentation: With application to skin tumor borders. IEEE Engineering in
Medicine and Biology Magazine, 15(1), 104-111.

Dhanachandra, N., Manglem, K., & Chanu, Y. J. (2015). Image Segmentation Using K -
means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia Computer Science,
54, 764-771

J. Fritsch, S. Lang, A. Kleinehagenbrock, G. A. Fink and G. Sagerer, "Improving adaptive
skin color segmentation by incorporating results from face detection,” Proceedings. 11th IEEE
International Workshop on Robot and Human Interactive Communication, Berlin, Germany,

2

0
0
2

T O O

WhWwWw' NWW

